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The increasing proportion of renewable energy sources in power grids leads to challenges concerning balancing
production and consumption. One solution to this grid challenge is to utilize demand-side flexibility. To use the
full potential of demand-side flexibility, dynamical models and optimal control methods must be used. This
paper demonstrates how demand-side flexibility can be enabled for a refrigeration system using an add-on
ice-tank module to actively curtail the refrigeration system and thereby leveraging time-varying power prices.
The operation of the ice-tank is the solution to an optimal control problem that minimize the integrated
electricity costs. This optimal control problem is solved numerically and the performance of the strategy is
successfully tested in a real experiment where cost-savings of approximately 20% are observed (compared
to not having an ice-tank available). The proposed optimal control strategy is tested in real-life experiments
spanning over 24 h. The dynamical relation between the operation of the ice-tank and the power consumption
(the compressor capacity) is modelled using stochastic differential equations. This differential equation model
is calibrated on 13 h of training data using the continuous—discrete Kalman filter and the maximum likelihood

framework.

1. Introduction

Recently, Denmark agreed on its first ever Climate Bill, committing
to reduce greenhouse gas emissions by more than 70% by 2030 com-
pared to the Danish emission levels in 1990 (Denmark, 2019). This will
increase the need for renewable energy sources and efficient integration
will increase the need for demand-side flexibility (Ueckerdt, Brecha, &
Luderer, 2015). This paper demonstrates a real example of short-term
demand-side flexibility by curtailment of the power consumption of
a refrigeration system using an add-on ice-tank module. The ice-tank
operation (i.e when the ice-tank curtails the refrigeration system) is the
solution to an optimal control problem which minimize the integrated
power costs. The refrigeration system is located at the Danfoss test
facility in Nordborg, Denmark. This refrigeration system resembles a
small retail or supermarket refrigeration system.

Denmark has approximately 4500 supermarkets distributed across
the country. These supermarkets consume more than 550,000 MWh per
year, which constitutes about 2% of the annual Danish power consump-
tion (Hovgaard, Larsen and Jorgensen, 2011). The power consumption

of supermarkets comes from e.g. electric heating, lighting, and cooling.
The installed cooling capacity varies a lot between supermarkets but is
typically in the range from 10 to 200 kW, depending on the size of the
refrigeration system. The refrigerated goods in the refrigeration units
can have a large thermal capacity, thereby enabling flexibility in the
refrigeration system.

The literature contains a lot of work concerning online control
and forecasting of supermarket refrigeration systems and their power
consumption. In Hovgaard, Larsen, Skovrup and Jergensen (2011),
a continuous time model based on ordinary differential equations is
introduced. This model is used in an economic model predictive control
algorithm, where the total cost of the electricity consumption associ-
ated with the refrigeration system is minimized. This economic model
predictive control algorithm is extended in Vinther et al. (2016) to
also consider a balancing market to further reduce the operational
cost of the refrigeration system. Similarly, Larsen, Thybo, and Ras-
mussen (2007) applies a model predictive control scheme to optimize
the daily operation of a refrigeration system to reduce the power
consumption. Glavan, Gradisar, Humar, and Vranci¢ (2018) uses a
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Fig. 1. This figure shows an overview of the total refrigeration system used to test the performance of optimally controlling an ice-tank.

control strategy to use the demand-side flexibility in a refrigeration
system to reduce the peak power demand and thereby reduce the
electricity costs. Hovgaard, Larsen, Edlund, and Jorgensen (2012) con-
siders the value of operating and offering flexibility of refrigeration
systems. Rasmussen et al. (2016) introduces a discrete time model
for load forecasting a supermarket refrigeration system. This model
distinguishes between supermarket opening hours and closing hours
to improve longer horizon forecasts. Altwies and Reindl (2002) and
Goli, McKane, and Olsen (2011) discusses the potential of demand-side
flexibility for refrigerated warehouses. In Heerup and Green (2014), a
rule-based control method is used (charging the ice-storage during the
night, and melting during daytime) to investigate whether ice-storage
is financially feasible for retail CO2-based refrigeration systems. Barzin,
Chen, Young, and Farid (2015) presents a simulation study based
on electricity tariffs from New Zealand, where a price-based control
strategy is used to optimize a thermal storage for a freezer. Murphy,
O’Mahony, and Upton (2015) compares different control systems to
optimize ice-storage for food refrigeration. In Dowling, Kumar, and
Zavala (2017), a financial analysis of actively operating a battery under
Californian market conditions is investigated. This paper demonstrates
that, under perfect information conditions, optimally managing the
battery and bidding in multiple electricity markets can create much
larger revenues compared to participation only in a traditional spot
market.

This paper uses continuous—discrete models to estimate a dynam-
ical model of the total refrigeration system. This continuous—discrete
models have been used for a wide range of modelling and control
related applications in the literature: for diabetes modelling in Duun-
Henriksen et al. (2013), for modelling of heat dynamics of a building
in Bacher and Madsen (2011) and Kristensen, Madsen, and Jgrgensen
(2004), and for modelling and control of wastewater aeration in Brok,
Munk-Nielsen, Madsen, and Stentoft (2019, 2020).

1.1. Key contributions and paper organization

The existing literature presents few real experiments which test the
proposed strategies. In the context of the reviewed literature, this work
answers the following research questions:

» How can continuous—discrete stochastic systems be used to model
the joint refrigeration and ice-tank system?

« What are the cost-savings potential of optimally operating the
joint refrigeration and ice-tank system?

To answer these research questions, an optimal control problem is
formulated; this optimization problem is based on a stochastic dif-
ferential equation model which is calibrated to a training data-set
with discrete observations. Using this differential equation model, the
optimal control problem yields a numerical algorithm that optimally
curtails a small retail refrigeration system using the add-on ice-tank

module. This model formulation has two main advantages: (1) the
estimation process is independent of the sampling rate and can easily
manage irregular sampled observations, and (2) the estimation process
is based on a maximum likelihood framework. This is in contrast to
discrete-time methods used in the existing literature where the model
parameters are dependent on the sampling time.

The performance of the optimal control algorithm is tested in a
real physical experiment where cost-savings of approximately 20% are
observed (compared to not having an ice-tank available).

This paper is structured as follows: first, the joint refrigeration
and ice-tank is introduced. This section also contains an example of
operation of this joint system. The second section describes how a
continuous—discrete stochastic model (formulated using a stochastic
differential equation (SDE) with discrete observations) can be cali-
brated to a data-set. This section also presents a one-state model of the
compressor capacity of the joint refrigeration and ice-tank system. The
third section introduces the Nordic power market. The fourth section
defines the optimal control algorithm. The fifth section presents the
results of operating the ice-tank in a real experiment using the optimal
control algorithm. The paper concludes with a discussion of the results,
a future outlook for the proposed optimal control algorithm and a brief
summary.

2. The refrigeration system

The test refrigeration system is located at a Danfoss test facility
in Nordborg, Denmark. The system compressors have a rated power
consumption of approximately 12.4 kW. The power consumption of the
compressors is the only source of power consumption considered in this
paper. At the Danfoss test facility it is possible to simulate an outdoor
temperature. In this study, this temperature is fixed at an average of
approximately 35 °C. This corresponds to a very warm Danish Summer
day. The ice-tank used is an Ice Bear 40, manufactured by Ice
Energy. It is possible to alternate the mode of this ice-tank using an
API service. The ice-tank can be in the following three modes:

- CHARGE, in this mode the ice-tank builds up the ice-storage. The
rated power consumption in this mode is approximately 3 kW.
IDLE, in this mode the ice-tank does nothing. This mode has
a small power consumption (approximately 9 W), and due to
imperfect insulation there is also a small thermal loss (i.e. a small
reduction of the ice-storage).

MELT, in this mode the ice-tank melts the ice-storage and starts
curtailing the power consumption of the refrigeration system. In
this mode the ice-tank has a small power consumption (approxi-
mately 250 W).

The latency of the API service is in the order of magnitude of 1-2 min
due to communication via a third party server from which the ice-tank
pulls data and commands.
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Fig. 2. This figure shows the results of the initial ice-tank test. This data is used to calibrate the dynamical model which will be used in the optimal control problem defined
later. The top plot shows the compressor capacity (measured in %) and the bottom plot shows the ice-tank regime and the outdoor temperature (measured in °C). The refrigeration

system is sampled every six seconds.

Fig. 1 shows a schematic overview of the test setup. The left part of
this illustration is the ice-tank, which is the controllable component of
the total refrigeration system. The middle part is the existing refrigera-
tion system, which will be considered as a non-controllable system. The
ice-tank is connected to the refrigeration system via a sub-cooler. To
artificially emulate an outdoor temperature, a water heater is connected
to the refrigeration system’s evaporator via a water pump. This water
heater can be used to emulate a fixed outdoor air temperature and this
has been done in this study.

Note: Tests with lower outdoor temperatures have also been done.
However, these results will not be presented, although they will briefly
be discussed later.

In the next section, a dynamical model of the dynamical inter-
play between the refrigeration system and the ice-tank is defined. To
calibrate this model to the actual system under consideration, a test
data-set has to be generated. To generate this data-set, the ice-tank is
alternated through four melt-cycles:

+ A cycle with 30 min of MELT followed by 30 min of IDLE (from
13:00 until 14:00).

= A cycle with 45 min of MELT followed by 45 min of IDLE (from
14:00 until 15:30).

+ A cycle with 60 min of MELT followed by 60 min of IDLE (from
15:30 until 17:30).

» The final melt cycle is 90 min long and begins from 17 : 30. When
this cycle ends, the ice-tank remains in the IDLE mode.

These cycles — together with the compressor capacity and the outdoor
temperature — can be seen in Fig. 2. The effect of the ice-tank switching
to and from the MELT regime is clearly observed. From Fig. 2 it is
also seen that the simulated outdoor temperature also exhibits larger
oscillations when a mode-change of the ice-tank is implemented. This
is due to the change in the work-load of the refrigeration compressors.
This initial cycling of the system only ran for 13 h due to a busy
schedule at the Danfoss test facility.

In the next section, a method for calibrating a dynamical model (in
terms of an SDE) to the test data-set shown in Fig. 2 will be presented.

3. Modelling using SDEs

Modelling physical systems using SDEs provides a natural method
to represent the phenomenon as it evolves in continuous time. A priori
knowledge about the system can be included, and the estimated pa-
rameters do not depend on the sampling time (unlike for discrete-time
models). The representation of noise in continuous time also allows for
a parsimonious representation that is independent of the sampling time.

This section describes how to use SDEs to model the dynamical
interaction between the refrigeration system and the ice-tank. This
joint system can be considered as a continuous—discrete stochastic
system (Jazwinski, 1970). The model used in this paper is an SDE with
discretely sampled observations defined according to

(1a)
(1b)

dx(1) = [ (x(1), u(r); p)di + g(x(1), u(1); p)de(t),
Vi = h(x(1y); p) + vy,

where x, u, y and p are the states, inputs, observations and time-
invariant parameters. v; ~ Njq(0, Ry) is the measurement noise and
w is a standard Brownian motion. Brownian motion is defined by its
independent increments which satisfy that for each 5,1 € R, @w(1)—a(s) is
normally distributed with zero mean and covariance I(z—s); i.e. dew(r) ~
N;ig(0, Idn). f @ R"™xxR"™—R"x is often referred to as the drift func-
tion, while g : R"xR™—R"xR" is called the diffusion function. In
this notation, n,, n, and n, denote the number of states, inputs and
Brownian motions, respectively. The stochastic model defined in (1) is
also referred to as a continuous—discrete stochastic state-space model
where the dynamics are defined according to an SDE with discrete
observations. The values, {7;} ]’{Vi o denote the sampling times of the
continuous—discrete system.

For the joint system consisting of the ice-tank and the refrigeration
system, the state of the system, x, will be the compressor capacity and
the input, u, will be the ice-tank mode (i.e. a binary switch, modelling
if the ice-tank is in IDLE or MELT mode). The parameters, p, will pa-
rameterize the dynamical relations between the ice-tank mode and the
compressor capacity. The definitions of the functionals, /, g and h, and
the unknown parameters, p, will be defined after the introduction of the
continuous—discrete extended Kalman filter (CDEKF) and the associated
maximum likelihood (ML) method. For further reading concerning the
CDEKF and ML methods for SDEs, the authors refer to Jazwinski (1970)
and Oksendal (2013).

3.1. Estimating parameters embedded in SDEs

The method presented next uses the CDEKF to evaluate the like-
lihood for a batch of data (Kristensen et al.,, 2004). The CDEKF is
based on two schemes: a prediction scheme and an updating scheme.
These schemes are briefly introduced in the following. %,_, and B,_,
will denote the mean and covariance predictions of the state, x, while
Rp-ijk— and f’k_”k_, will denote the mean and covariance filtered
estimates of x (or reconstructions).
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3.1.1. The prediction scheme
Given the initial conditions
P (1) = Py (2

the state and covariance are predicted by solving the system of ordinary
differential equations (ODEs) given by

K1) = Kyt

Rem1 (0 = [ Ry (0, w(0); p), (3a)
ﬁk_ 1) = AP (D + P_ (DAQWY + GG, (3b)
where

a
AN = %(fck_l(f), u(t);p), G = g(Xp_ (1), u(); p).

The one-step predictions of the mean and covariance of the states
are obtained as the solution of (2)—(3) at the new sample point, 1.

Consequently, the predictions of the mean and covariance are
Ripe—t = X1 (1), f)k\k—l =P, (). 4

3.1.2. The updating scheme
The literature contains many methods for the updating scheme in
extended Kalman filter algorithms. They all compute the innovation by

e =V — h(ik\kq), (5)

the Kalman filter gain, K, by

oh ..
Gy = a(xk\k—l)! (6a)
Ry = Ckﬁmk—lcgﬁ + Ry, (6b)
K = Py G Ry, (6c)

and the filtered state estimate, % ,, by
ik = Xpi—1 + Kieey- (7)

The key difference is how they compute the filtered covariance, Py .

Two standard updating schemes for the covariance are

Pklk = (1 - K.Cy) ‘ﬁ‘k\k—l (8a)
= Py — K Ry K- (8b)

Numerical implementations based on either (8a) or (8b) may give rise
to bad performance and even divergence, as the numerically computed
values are not guaranteed to be both positive (semi-)definite and
symmetric. The Joseph stabilization form

P = (T = K, ) Py (T = K, Cy)' + KL ReKL. 9

for updating the filtered covariance estimate guarantees that the nu-
merical value of Pk is symmetric positive (semi-)definite.

3.1.3. Maximum likelihood estimation

Using the one-step prediction errors, from the prediction and up-
dating schemes, the likelihood of the model parameters given the
discretely sampled observations can be computed; the parameters that
maximize this likelihood computation will be used as the model param-
eters for the model used in the optimal control problem. In this section,
this likelihood calculation is introduced.

Let {y;} j"i ! denote M observations relating to the sample points
(1 }j‘i ) in (1b). Define the information accumulated up until the kth
sample point as Y, = {y; 15?:[. Then the likelihood function, £, can be
defined as

L(p|Vpr) < (Var | ). (10)

where ¢ is the joint density function of the observations, Y,,. Using
the definition of conditional probabilities, the right hand side can be
decomposed into

M
& (Par 1p) =[] (v 1 Vicrop) - an

k=1
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Table 1

Estimated parameters of the SDE.
Parameter Description Value Unit
n MELT rate 0.00183 Wl's
Py MELT asymptotic level 66.92400 %
P IDLE rate 0.00085 /s
Pa IDLE asymptotic level 94.89100 %
Ps Diffusion coefficient 0.28130 -
Do Observation variance 1.96580 -

such that the log-likelihood function can be expressed by

IOE(£ (F|yM)) =ilog(¢(yk |yk7|,ﬂ))- (12)

Consequently, the ML parameter estimates, py;, are given by
Py € argmaxlog (L(p | Yap))
peRp

M (13)
=argmax Y. log(d(yy | Yi—y. p))-
peR" 2

where n, denotes the number of parameters. The SDE in (1a) is driven
by a Brownian motion, and since the increments of a Brownian motion
are Gaussian, it is reasonable to assume that, under some regularity
conditions, the conditional densities in (11) can be well approximated
by Gaussian densities

1 -
exp (— 3 e RkIL_lek)

Jdet(Ry_)2a)"™

where n,, is the number of output variables.

O | Vier:p) = a4

3.2. Estimating the refrigeration system model

The drift function, f, will be parameterized according to

t € MELT
t € IDLE.

pi(py — x(1)),

15
p3(pg — x(1)), (15)

S0, u(t): p) = {
By defining the input function, u, as
u(t) = (1(t € MELT), 1(¢ € IDLE)) . (16)

where

1, tel

0. 1erl’ (17

]1(1‘6[):{

the drift function can be defined according to

F(x(@),u(r); p) = u, (t)p,(p, — x(1))
+ uy(1)p3(py — x(1)).

(18)

It is assumed that the incremental covariances are constant, and hence
the diffusion function, g, is defined as a positive parameter, ps. g is
parameterized as

g(x(1), u(?); p) = ps. (19)

The compressor capacity is observed directly. The function 4 is there-
fore defined as

h(x(t); p) = x(1p). (20

The variance of the uncertainty of the observations is also defined as a
positive parameter

R, = pg. (2D

which means that the variance is assumed to be time-invariant. The
parameters are estimated using CTSM-R (Juhl, Mgller, & Madsen,
2016) and the parameter estimates are listed in Table 1.
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Fig. 3. This figure shows the results of a full-horizon simulation using the first-order model. The dashed grey line is the model predictions, the grey dots are the sub-sampled
observations, the solid grey line is the high-frequent observations and the solid black line is the ice-tank input.

The data sampled from the Danfoss test system is sampled at a
very high frequency (around every six seconds) compared to the time-
constants of the dynamical system. The observations have been sub-
sampled such that the observations of the data-set used within CTSM-R
are sampled every 15 min (one observation every 15 min). In Fig. 3,
a full-horizon simulation using the estimated first-order, two-regime
model introduced above, is shown. The solid black line represents the
schedule of the switching function, u, the filled grey dots are the sub-
sampled observations, the solid grey line represents the observations of
the full data-set and the dashed grey line is the compressor capacity
forecast given by the model introduced above. The forecast is not
updated for each observation and is therefore a full horizon forecast
(or simulation); the dashed grey line is the solution to the prediction
scheme of the CDEKF.

4. The nordic electricity market

In Northern Europe, electricity is traded in a common market called
Nord Pool, which consists of 15 interconnected price areas. The market
trading with the largest volume is called the day-ahead market. Here,
electricity is bought and sold for the upcoming day and this market sets
the spot price. When the day-ahead market closes, the intra-day market
opens. In this market, electricity can be traded until 45 min prior to the
operating hour.

One of the primary challenges when operating transmission sys-
tems is to guarantee grid stability. The Nordic Transmission System
Operators (TSOs) have many methods for dealing with this challenge;
one of them being a common balancing market (Energinet, 2017). In
the balancing market, market participants have the option to make
a bid that defines how much a participant is willing to change their
production or consumption schedule in a given operating hour. The
balancing market also closes 45 min prior to the operating hour. Hence,
when approaching the operating hour, the TSO has the possibility to
activate balancing bids ahead of time and thereby reduce the risk of
imbalances. Three scenarios can take place in the balancing market:

(1) If the imbalance is negative, there is a deficit of electricity in
the price area, and hence an increase in power production or
a decrease in power consumption is needed. This is called up
regulation.

(1) If the imbalance is positive, there is a surplus of electricity in the
price, and hence a decrease in power production or an increase
power consumption is needed. This is called down regulation.

(=) If the imbalance is too small or the duration is too short, the
imbalance is not offered in the balancing market.

In a situation with up regulation, electricity is sold, while in the
situation with down regulation, electricity is bought. The structure of
the balancing market requires that the up regulation price is greater
than the day-ahead price, while the down regulation price is lower than
the day-ahead price. In the price area DK1, a large share of the total
power production is generated by wind turbines. In Parbo (2014) it is
suggested that approximately 65% of the total imbalances in DK1 are
due to forecast errors of wind power production.

In the optimal control problem defined later, it is assumed that the
combined refrigeration and ice-tank system is a price-taker of the spot
price. The potential of also participating in the balancing market is not
considered. However, it should be emphasized that the savings shown
later in this paper should be regarded as a lower bound of the savings
one can expect from e.g. also participating in a balancing market.

5. The optimization problem

In this section, the optimization problem for the optimal switching
times is defined. The system dynamics embedded into the optimization
problem formulation are ordinary differential equations (ODEs) defined
by the drift function in (15) with the parameters, p, listed in Table 1.

5.1. Optimal control by optimal switching times

The drift function, f, in (15) is a regime-type function defined
by a set of switching times. Define the set of switching times r =
N .
{%i gL Ti o1 § 1 fOT Which the structure

(22a)
(22b)

TiMELT < Tiy1,IDLE-

7 1L < TiMELT

. . N .
is imposed. The variables {7,z 1},_, denote the temporal switches for

when the ice-tank curtails the refrigeration system, and hence de-loads
the system, and the variables {7, 1, ¢ }IN:0 denote the temporal switches
for when the ice-tank stops curtailing the refrigeration system and the
system returns to normal operation. The number of switching times, N,
is a design parameter of the optimal control problem; different values
of N will lead to different control strategies. In this paper N = 5 is
chosen.

Using these temporal switches, /' can be defined according to the

temporal decomposition given by
N-1
F(,1:p) = Y (1 € Iygry) fagrn(e(0): p)

=0
N (23)

+Z 1 (1 € I, rprz) Srore(e(t); p),
i=0
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Fig. 4. This figure shows the online results of actually implementing the optimal switching times. The top plot shows the predicted compressor capacity (left axis) together with
the emulated outdoor temperature (right axis). The bottom plot shows the accumulated cost (left axis) and the used spot price (right axis).

where the intervals I,z and I, ;. are defined according to

Tiyerr = L% pErt Ziv 1oizl (24a)
I; iz = 17 1o1es Ziperls (24b)
and the functionals fyg r and fipp according to

JueLr(x:p) = py(p2 = X) (25a)
Jroe(x:p) = p3(py — X). (25b)

The convention z; 1y g = 0 and 7y ygrr = T will be used, for which the
parameter T > 0 will denote the simulation horizon for the optimal
control problem defined later in this section.

Let x represent the only state of the system. This state models
the compressor capacity. Besides the electricity cost of running the
compressors, there is also a cost associated with operating the ice-tank
in the two regimes. Let ¢(x(7),1) denote the total cost of operating the
combined system consisting of the refrigeration system and the ice-tank
at time ¢ with a compressor capacity of the refrigeration system of x(r).
The total cost rate ¢ is then given by

e(x(1),1:7) = q(1)
N-1

X kx(1) + k 1(rel;
( MELT ; ( MELT) (26)

N
+kpe 2 1(t € I;p) )
i=0
where ¢(r) represents the electricity cost at time ¢, k is the rated capacity
of the compressor, kyg 1 is the electricity consumption of the ice-tank
cost when it is curtailing the refrigeration system, and kqy is the
electricity consumption of the ice-tank when it is idle. Integrating this
instantaneous total cost rate, ¢(x(1), 1), yields the accumulated total cost

T
J(x, r):/ c(x(0),t; T)dr. (27)
0

This functional will be the objective function of the optimal control
problem defined next.

Using the definitions and variables defined above, the optimal
control problem is defined according to

min {J(x, = /D ’ clx(n),1; r)dr} , (28a)

s.t.
teT, (28b)
x=[f(ap1), in[0,T] (28¢)
x(0) = xp, (28d)

where the set 7 defines the temporal structure given in (22) together
with the temporal budget constraint given by

N

Z (%1108 = Tiperr) <7
i=0

(29)

This budget constraint is due to the fact that the ice-tank only has a
finite amount of ice available and the constraint will also ensure that
the trivial case, where the ice-tank is only curtailing the refrigeration
system, becomes infeasible (assuming that 7 is chosen properly). The
constraint in (29) models the maximum allowed time of curtailment.
In this paper, this budget parameter is defined as 7 = 8 h.

Note: An extra argument to the functions ¢ and f in (28a) and (28¢)
has been included to indicate the dependence of the switching times,

T.

5.2. Analytical gradient expression

To enable efficient numerical solution of the optimal control prob-
lem (28), gradient information has to be made available to the op-
timization algorithm. The Jacobians of the temporal constraints in
(28b) are trivial, since these constraints are all linear. Hence, the only
derivatives that are non-trivial, are the derivatives that relate to the
objective function (28a). The gradient of the objective function contains
the elements

of (x,r) and af

(x, 7). (30)

9T} vErT T,,IDLE

Analytical expressions of these will be derived in the following. These
expressions are based on derivations and results from Axelsson, Egerst-
edt, Wardi, and Vachtsevanos (2005).

First, derivatives with respect to 7, yz, r are considered. Inserting the
definition of J yields

-
9t (x, 1) = J / c(x(1),t; T)dt,
aTj,MELT arJ'J'JLELT 0

Using the definition of the indicator function of the temporal decom-
position, the integral in (31) can be defined as

T T
f e(x(t),t; r)dt = / kq(t)x(r)dt
0 0

Nl Ti+1,IDLE
+ ket f q(n)dt
Ti MELT

=0

N Ti MELT
+kpre Q) / g(ndr.
Ti, IDLE

=0

()]

(32)
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Using (32), the derivatives with respect to 7, g, simplify into

aJ

aTj.MELT

(x,7) =

(33)

T
3 / kq()x(d + (kpprg — kMELT) q (T,,MELT) s
T;MELT JO

where the first term can be computed using the adjoint states (or co-
states) for the optimal control problem (Axelsson et al., 2005). The
co-states (to be denoted by A) satisfy the dynamical equations
: af ’ de ’ :
i=-"L(x; 11— (x,; s
dx(X’P’T) dx(x’ i7),  in [0, 7] (34)
AT)=0.

Using the results from Axelsson et al. (2005), the derivatives with
respect to 7y yg r can be computed from

A(TJ.MELT)’ (-f 1oL (T e 1)s P) — Syprr (T ) P)) (35)

+ (krpre — kagrr) 9 (7 err) -
The result in (35) is not valid for 7, . However, this variable is
by convention fixed (zyuzr = T) and will not be subject to the
optimization.

Following the same steps as above, a similar result can be derived
for the derivatives of the objective function (28a) with respect to z; 5.
The derivatives with respect to these variables can be computed from

aJ

BTJ',IDLE

Mz oe) (fugr (et 1oee)s p) — froe(x(z; more): p))
+ (kMELT - kIDLE) q (Tj.IDLE) -

The result in (36) is not valid for 7,1y ;. However, this variable is

by convention fixed (7y1p;z = 0) and will not be subject to the
optimization.

(x,7) =

(36)

Note: The implementation of the numerical solution of the optimal
control problem (28) is done using a single-shooting formulation (Bock
& Plitt, 1984; Diehl, Bock, Diedam, & Wieber, 2006). This means that
the dynamical Eqgs. (28¢)—(28d) are solved internally of the imple-
mented objective function. Thus, the only constraints needing to be
implemented are the linear set of constraints defined by the temporal
set of constraints in (28b).

5.3. Numerical implementation

The optimal control problem has been solved numerically in
python. A single-shooting approach has been applied where the
solve_ivp function from the scipy package has been used to
solve the dynamical equations (the state and co-state equations). The
Runge-Kutta 5(4) method with adaptive step size has been chosen
as the numerical method (Dormand & Prince, 1980; Virtanen et al.,
2019). The optimization algorithm used is a constrained trust-region
method, which is available via the minimize function from the
scipy package (Conn, Gould, & Toint, 2000).

6. Results

This section presents the results of implementing the optimal control
algorithm defined in (28) for the total refrigeration system illustrated
in Fig. 1. A single open-loop iteration of the optimal control problem
is used to compute the optimal switching times. These switching times
are used to operate the ice-tank for a period of 24 h (or one day). This
implies that no feedback from the refrigeration system nor the ice-tank
is used. The power prices are assumed to be known for the entire 24 h;
this is a reasonable assumption as many retailers offer power prices
which follows the spot price. The spot price is always known 12 h to
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Table 2

Power consumption parameter.
Parameter Description Value Unit
k Rated compressor capacity 12.4 kW
kgt MELT power consumption 250.0 W
ke IDLE power consumption 9.0 W

36 h ahead (depending on the time of day); hence, optimal control
problem is run when there is at least 24 hourly power prices available
(this is e.g. the case everyday at 4pm).

The spot prices from a random day at Nord Pool have been used
to generate a load input in terms of a price signal. The outdoor tem-
perature is emulated using the water heater shown in Fig. 1, and this
temperature is set to average around 35 °C such that the compressors
of the existing refrigeration system would operate close to 100% when
the ice-tank is in the IDLE mode. The temporal budget constraint
parameter, 7, in (29) is defined such that the ice-tank can only be in the
MELT mode for 8 h. It is assumed (in the financial analysis in Fig. 5)
that the ice-tank has been charged with a zero cost. The values of the
power consumption parameters k, kyg; 1 and kqp ; used in the objective
function of the optimal control problem are given in Table 2.

The optimal control algorithm optimally distributes five MELT peri-
ods throughout the 24 h of operation (starting at 4pm on the first day of
testing). These cycles are distributed according to (rounded to nearest
second):

. MELT starts at 16:00:08 until 16:40:06.
. MELT starts at 19:57:34 until 21:29:45.
. MELT starts at 23:32:58 until 01:44:14.
. MELT starts at 02:45:01 until 05:58:25.
. MELT starts at 14:28:35 until 14:51:43.

a A w N~

In Fig. 4, the results of operating the ice-tank using these optimal
switching times are shown. The top plot shows the difference between
the predicted compressor capacity (predicted by the SDE model) and
the observed values. The bottom plot shows the spot prices used in the
objective function together with predicted accumulated cost. In Fig. 5,
the performance of operating the ice-tank is presented. The top plot
shows the difference between actively operating the ice-tank and not
having an ice-tank at all. The bottom plot shows the predicted savings
and the realized savings. The realized savings are computed based on
the observed compressor capacity values shown in the top plot of Fig. 4.
From Figs. 4 and 5 the following observations are made:

= Fig. 4 shows that when the ice-tank is in MELT, the compressor
capacity drops to approximately 67%. This corresponds to the
parameter value of p, given in Table 1. From Fig. 4 it is also seen
that the SDE model predicts too low compressor capacities when
the ice-tank switches from MELT to IDLE. This is observed after
the first three MELT cycles.

From Fig. 4 it is observed that the emulated outdoor temper-
ature exhibits a higher degree of variability when the ice-tank
implements a mode change.

Fig. 5 shows that there is some discrepancy between the pre-
dicted savings of operating the ice-tank and the realized savings.
However, the predicted and realized savings are both in the
order of approximately 20%. This discrepancy is expected, as the
predicted savings are based on forecasts with a horizon of up to
24 h.

7. Discussion & future outlook

This section discusses some of the observed deficiencies observed for
the SDE model used in the optimal control problem. A possible method
for economical and efficient charging of the ice-tank is also discussed.
In connection with this, it is also discussed how the optimal control
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Fig. 5. This figure visualizes the effect of having the ice-tank installed. The top plot shows the accumulated cost of actively operating the ice-tank vs. not having the ice-tank.
The bottom plot shows the relative savings of operating the ice-tank. The bottom plot shows how the predicted savings compare to the realized savings. It is assumed that the

ice-tank has been charged with zero cost.

problem can be extended to include other load inputs than the spot
price (e.g. CO2 emissions). Finally, the applicability of the ice-tank to
other regions (than Scandinavia) and hence other electricity markets is
discussed.

7.1. Extensions to the dynamical model

The dynamical model used in the optimal control problem in (28)
has difficulties in explaining the transient dynamics observed in Figs. 2—
4 when the ice-tank implements a mode change. One extension to the
regime-based first-order model used to model the drift function (15)
could be to include the outdoor temperature as a state in the SDE model
such that the higher variability of the outdoor temperature might be
explained by the model. A second extension could be to consider higher
order models that better describe the dynamics observed after a mode
change. The data presented in Figs. 2—4 suggest that a suitable model
might be nonlinear, since the compressor capacity tends to drop both
when the ice-tank switches from IDLE to MELT and from MELT to
IDLE.

The SDE model used in this paper is estimated from data where the
refrigeration system is measured under similar conditions. Hence, this
model is indifferent to changing conditions such as e.g. opening and
closing hours. In Rasmussen et al. (2016) it is shown that there is a
clear difference in a supermarket’s power consumption during opening
and closing hours. Thus, in a real-life application the model has to be
extended to accommodate such conditions. One solution to this might
be to consider two different models for opening and closing hours
respectively. Neither is the SDE model suitable under conditions where
the outdoor temperature exhibits time-varying dynamics. Under such
conditions, the model parameters, p, might all depend on the value
of the outdoor temperature. A suitable extension to accommodate this
might be (again) to include the outdoor temperature as a state in the
SDE model.

Both of these extensions also address the importance of robust-
ness of the controller. The method proposed in this paper has no
state or parameter update step; however, to accommodate changing
external conditions such as opening hours and outdoor temperatures,
re-calibration of the dynamical model becomes very important. Using
continuous—discrete stochastic systems, as the system introduced in
(1), the re-calibration process can easily be included. These extensions
will also influence the solution time of both the model calibration and
the optimization algorithms. These solution times were observed to be
insignificant in connection with the modelling and optimization done
in this paper.

7.2. Optimal and sustainable charging of the ice-tank

In the calculations of the realized and predicted savings presented
in Fig. 5, it is assumed that the ice-tank has been charged with zero
cost. Naturally, under varying market conditions this will not always be
feasible. However, one of the main advantages of using the ice-tank as
the flexible component in the refrigeration system is that the only two
constraints are the minimum and maximum capacities of the amount of
ice that can be stored. If the refrigeration system itself had been subject
to a control strategy as done in e.g. Hovgaard, Larsen, Skovrup et al.
(2011), Larsen et al. (2007), Vinther et al. (2016) and Glavan et al.
(2018), then the system would also be subject to hard constraints on
e.g. the temperature of the display units. Hence, the ice-tank can be
used to provide flexibility in a balancing market and thereby reduce
the price of generating the stored ice. Furthermore, the optimal control
problem can even be extended such that the ice-tank can be used to
optimally distribute in which electricity market the power consumption
is traded (day-ahead market, intra-day market, balancing market, etc.).
It is expected that such formulations would heavily increase the ob-
served savings, as the price differences become much larger. However,
to take full advantage of this, a better model of the short-term dynamics
is needed, together with a model that generalizes to varying exogenous
conditions (e.g. the outdoor air temperature).

In the objective function used in the formulation of the optimal con-
trol problem in (28), only the cost associated with power consumption
is considered. However, this objective function can easily be extended
to also accommodate a cost associated with e.g. the CO2 emissions
of power consumption. This type of combination of objectives for an
electricity consumer is investigated in e.g. Junker et al. (2018).

7.3. Other electricity markets

The results presented in this paper rely heavily on the assumption
of high outdoor temperatures such that the compressors yield a high
power consumption. This is a constraining assumption for the applica-
bility in Northern Europe, as the savings presented in Fig. 5 will only be
feasible during the summer months. Experiments with lower tempera-
tures have also been conducted. For these experiments, savings in the
range from 5% to 10% are observed. Thus, lower outdoor temperatures
will extend the payback period of the investments associated with the
installation and maintenance of the ice-tank.

One region with higher average temperatures than Denmark and
Scandinavia in general, is California. The Californian electricity market
offers a variety of markets which might be economically beneficial to
consumers who can deliver demand-side flexibility. In Dowling et al.
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(2017) it is shown that participation in the Californian energy markets
(day-ahead market, 15-min market and real-time market) and bidding
for ancillary services (non-spinning reserves, spinning reserves and
regulation) hugely increases the revenue potential of actively operating
a battery. The paper shows that under perfect information conditions,
the revenue generated from participation in the full-stack of electricity
markets might be up to 600% larger than the revenue generated by
only bidding in the day-ahead market. The ice-tank presented in this
paper has many similarities to a battery. Thus, it is expected that larger
savings (than shown in Fig. 5) are obtainable by actively bidding the
flexibility generated by the ice-tank in multiple markets on different
time-scales. However, this will require more accurate dynamical models
of the interaction between the ice-tank and the refrigeration system.

8. Conclusion

The goal of this paper was to investigate the economic potential of
actively operating an ice-tank connected to a refrigeration system using
an optimal control algorithm. Based on the experiments presented in
this paper, it is demonstrated that it is possible to lower the total elec-
tricity costs by approximately 20% with a temporal budget constraint
for the ice-tank of 8 h. It is expected that larger savings are obtainable
by actively bidding the flexibility generated by the ice-tank in multiple
electricity markets. However, this will require more accurate dynamical
models of the interaction between the ice-tank and the refrigeration
system.
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